Zusammenfassung
Postoperative Trübungen der implantierten Hinterkammerlinse
können zu signifikanten visuellen Beeinträchtigungen führen.
Einige Kunstlinsentypen, insbesondere zwei Faltlinsentypen zeigten in den
letzten Jahren Trübungen der Optik, die eine Explantation nötig
machten.1. „Snowflake”-Degeneration bei Poly (methyl methacrylat)
(PMMA)-Linsen: Bei der „Snowflake”-Degeneration von PMMA-Linsen
handelt es sich um eine unerwartete Spätkomplikation ca. 8 bis 15 Jahre
postoperativ. Ursächlich ist nicht das PMMA-Biomaterial selbst, sondern
ein Herstellungsproblem einzelner Linsentypen, die in großer Zahl um 1985
produziert worden waren.2. Kalzifikation und Degeneration des UV-Absorbers bei
hydrophilen Acryllinsen von Medical Developmental Research Inc. (MDR):
Durchschnittlich 2 Jahre postoperativ können milchige Trübungen im
Inneren der Optik hydrophiler Acryllinsen SC60B-OUV von MDR auftreten. Es wird
vermutet, dass die Einlagerungen auf Monomere ungebundenen, vorzeitig alternden
UV-Absorbers und/oder Kalziumpräzipitate zurückzuführen sind.3.
Oberflächen-Kalzifikation bei Bausch & Lomb Hydroview™-Linsen:
Zwölf bis 15 Monate postoperativ treten granuläre
Oberflächen-Kalzifikationen bei Hydroview™-Linsen auf. Der
Mechanismus der Trübungen ist nicht vollständig geklärt. Der
Hersteller sieht einen Zusammenhang mit Silikonanteilen im Verpackungsmaterial,
die ggf. als Katalysator der Kalzifikationen wirkten. Dem Hersteller nach, ist
das Problem nun gelöst. Längerfristige klinische Beobachtungen sind
erforderlich um dies zu verifizieren.4. „Glistening” hydrophober
Acryllinsen: Die Zeitspanne des Auftretens der „Glistenings” in
AcrySof™-Linsen ist sehr variabel. Es wird vermutet, dass sich durch
Temperaturschwankungen der Linse direkt vor oder bei Linsenimplantation
Mikrovakuolen im Acryl-Polymer formen. „Glistenings” bilden sich
dann durch Einströmen von Kammerwasser in diese Vakuolen. Meist
führen die Veränderungen nicht zu einer Visusreduktion, die
Kontrastsensitivität kann beeinträchtigt sein.
Postoperative opacification of intraocular lenses (IOLs) is a very
unpleasant complication for the ophthalmic surgeon and the patient. We report
on our experiences with opacification of different foldable IOL designs and
rigid poly (methyl methacrylate) (PMMA) posterior chamber lenses.1. Snowflake
degeneration of PMMA IOLs: This condition is an unanticipated and surprising
late postoperative finding 8 to 15 years after implantation. In our opinion,
this complication is probably not related to the PMMA biomaterial itself, but
rather it appears to represent a manufacturing problem that has affected a
selected, albeit large number of lenses manufactured in the 1980s-mid 1990s.2.
Degeneration of UV absorber material and calcium deposits within the optic of
hydrophilic IOLs: Two years postoperatively degenerations of UV absorber
material and calcium deposits within the optic of single piece hydrophilic
acrylic lenses SC60B-OUV manufactured by MDR (Medical developmental research
Inc. Clearwater FL, USA) can occur. Although the precise mechanism is not fully
known, it was assumed that these opacifications are due to premature aging of
the UV blocking agent incorporated in the lens biomaterial and calcification.3.
Calcification on the surface of the Bausch & Lomb Hydroview™ IOLs:
Twelve to 15 months postoperatively granular surface calcifications in
Hydroview™ IOLs occured. The mechanism is not fully understood. According
to Bausch and Lomb studies, part of the components of the packaging contained
silicone, which may have come off the packaging onto the lens optic, where it
then appears to be a catalyst for calcium precipitation. The manufacturer has
correlated a change in packaging with the appearance of the opacification. The
manufacturer now believes that this problem has been solved. However, final
verification will require a careful 1 - 2 years clinical
study.4. Glistenings in the hydrophobic acrylic AcrySof™ IOLs: The time
frame of glistenings in the AcrySof™ IOLs is highly variable. It has been
suggested that the occurrence of glistenings may be related to variations in
the temperature of the lens just prior to and or during insertion into the eye.
Formation of vacuoles may occur within the submersed acrylic polymer when there
is a transient increase and then decrease in temperature during the surgical
procedure. “Glistenings” may then subsequently form by ingress of
anterior chamber fluid. Contrast sensitivity can been decreased in some
patients, but clinically significant decrease of visual acuity has been
rare.
Schlüsselwörter
Hinterkammerlinse - Material - Degeneration - Biokompatibilität
Key words
intraocular lens - material - degeneration - biocompatibility - opacification
Literatur
1 Manuskript erstmalig eingereicht am 28. 6. 01 und in
der vorliegenden Form angenommen.
2 Gewidmet Sir Nicholas Harold Lloyd Ridley, Knight Bachelor, M.A.,
M.D., Cantab. (Cambridge); F.R.C.S., England; D.H.L. Medical University of
South Carolina, Charleston; D.S. City University of London, Fellow of the Royal
Society.
3 Supported in part by an unrestricted grant from Research to
Prevent Blindness, Inc., New York, NY, and a Max Kade postdoctoral research
grant (Schmidbauer), Max Kade Foundation, New York, NY.
01
Amon M, Menapace
R.
Cellular invasion on hydrogel and poly-(methyl methacrylate)
implants: An in vivo study.
J Cataract Refract Surg.
1991;
17:
774-779.
02
Amon M, Menapace
R.
In vivo observation of surface precipitates of 200
consecutive hydrogel intraocular lenses.
Ophthalmologica.
1992;
204:
13-18.
03
Apple D J, Sims
J C.
Harold Ridley and the Invention of the Intraocular Lens.
Surv Ophthalmol.
1995;
40:
279-292.
04
Apple
D J, Werner L, Pandey
S K.
Opacification of hydrophilic acrylic intraocular lenses.
EyeWorld.
2000;
9:
1-4.
05
Apple D J, Peng
Q, Arthur S N et al.
Snowflake Degeneration of Poly(methyl methacrylate) (PMMA)
Posterior Chamber Intraocular Lens (PC IOL) Optic Material. A newly described
clinical condition caused by an unexpected late opacification of PMMA.
Ophthalmology.
2001;
in press.
06
Apple
D J, Werner L, Pandey
S K.
Newly recognized complications of posterior chamber
intraocular lenses (editorial).
Arch Ophthalmol.
2001;
119:
581-582.
07
Apple
D J, Werner L, Pandey
S K.
Opalescence of hydrophilic intraocular lenses.
Eye.
2001;
in press.
08
Arthur S, Peng
Q, Apple
D J, Escobar-Gomez
M, Bianchi R, Pandey
K, Werner L.
Effect of heparin surface modification (HSM) in reducing
silicone oil adherence to various intraocular lenses.
J Cataract Refract Surg.
2001;
in press.
09
Binder P S, Deg
J K, Kohl F S.
Calcific band keratopathy after intraocular chondroitin
sulfate.
Arch Ophthalmol.
1987;
105:
1243-1247.
10
Bucher
P JM, Buchi
E R, Daicker
B C.
Dystrophic calcification of an implanted
hydroxyethylmethacrylate intraocular lens.
Arch Ophthalmol.
1995;
113:
1431-1435.
11
Chang
B YP, Davey
K G, Gupta
M, Hutchinson C.
Late clouding of an acrylic intraocular lens following
routine phacoemulsification.
Eye.
1999;
13:
807-808.
12
Chehade M, Elder
M J.
Intraocular lens materials and styles: A review.
Aust NZ J Ophthalmol.
1997;
25:
255-263.
13
Christiansen G, Durcan
J, Olson R, Christiansen
K.
Glistenings in the AcrySof intraocular lens: pilot
study.
J Cataract Refract Surg.
2001;
27:
728-733.
14
Dhaliwal
D K, Mamalis N, Olson
R J et al.
Visual significance of glistenings seen in the AcrySof
intraocular lens.
J Cataract Refract Surg.
1996;
22:
452-457.
15
Frohn A, Dick
H B, Augustin
A J, Grus F.
Eintrübungen bei Acryllinsen Typ SC60B-OUV der Firma
MDR.
Ophthalmo-Chirurgie.
2000;
2:
173-175.
16
Goarnisson S, Hennekes
R.
Medium term results of HEMA intraocular lenses
(Hydroview).
Bull Soc Belge Ophtalmol.
1999;
272:
63-68.
17
Guttman C.
Hydroview calcification resolved.
Ophthalmology Times.
2001;
4:
26.
18
Hollick
E J, Spalton
D J, Ursell
P G.
Surface cytologic features on intraocular lenses: can
increased biocompatibility have disadvantages?.
Arch Ophthalmol.
1999;
117:
872-878.
19
Izak
A M, Werner L, Pandey
S K, Macky
T A, Trivedi
R H, Apple D J.
Calcification on the surface of the Bausch & Lomb
Hydroview™ Intraocular Lens.
Int Ophth Clin.
2001;
41:
63-78.
20
Jensen
M K, Crandall
A S, Mamalis N, Olson
R J.
Crystallization on intraocular lens surfaces associated with
the use of Healon GV.
Arch Ophthalmol.
1994;
112:
1037-1042.
21
Jensen O A.
Ocular calcifications in primary hyperparathyroidism.
Histochemical and ultrastructural study of a case. Comparison with ocular
calcifications in idiopathic hypercalcemia of infancy and in renal
failure.
Acta Ophthalmol.
1975;
53:
173-186.
22
Murray R I.
Two cases of late opacification of the Hydroview hydrogel
intraocular lens (letter).
J Cataract Refract Surg.
2000;
26:
1272-1273.
23
Olson R J.
New cases of crystalline deposits on intraocular lenses not
related to any specific viscoelastic (letter).
Arch Ophthalmol.
1995;
113:
1229.
24
Olson
R J, Caldwell
K D, Crandall A S et
al.
Intraoperative crystallization on the intraocular lens
surface.
Am J Ophthalmol.
1998;
126:
177-184.
25
Omar O, Piresh
A, Mamalis N, Olson
R J.
In vitro analysis of AcrySof intraocular lens glistenings in
AcryPak and Wagon Whell packaging.
J Cataract Refract Surg.
1998;
24:
107-113.
26
Peng Q, Apple
D J, Arthur S, Merrit
J, Escobar Gomez M, Hoddinott
D.
„Snowflake” or „crystalline”
opacification of poly(methyl methacrylate) (PMMA) intraocular lens optic
biomaterial: a newly described syndrome caused by an unexpected late
biodegradation of PMMA.
Int Ophth Clinics.
2001;
in press.
27
Ridley N HL.
Intraocular acrylic lenses.
Trans Ophthalmol Soc UK & Oxford Ophthalmological
Cong.
1951;
71:
617-621.
28
Ridley N HL.
Artificial intraocular lenses after cataract extraction.
St. Thomas Hospital Reports.
1951;
7:
12-14.
29
Schauersberger
J, Kruger A, Abela C
et al.
Course of postoperative inflammation after implantation of 4
types of foldable intraocular lenses.
J Cataract Refract Surg.
1999;
25:
1116-1120.
30
Ullman S, Lichtenstein
S B, Heerlein K.
Corneal opacities secondary to Viscoat®.
J Cataract Refract Surg.
1986;
12:
489-492.
31
Werner L, Apple
D J, Kaskaloglu
M, Pandey S K.
Dense Opacification of the optical component of a hydrophilic
intraocular lens: A clinicopathological analysis of 9 explants.
J Cataract Refract Surg.
2001;
in press.
32
Werner L, Apple
D J, Pandey
S K.
Deposits on hydroview IOLs may come from packaging.
Ocular Surg News.
2001;
5:
16-17.
33
Werner L, Apple
D J, Escobar-Gomez
M, Öhrström
A, Cranford
B B, Bianchi
R, Pandey S K.
Postoperative deposition of calcium on the surfaces of a
hydrogel intraocular lens.
Ophthalmology.
2000;
107:
2179-2185.
34
Yu A KF, Shek
T WH.
Hydroxyapatite formation on implanted hydrogel intraocular
lenses.
Arch Ophthalmol.
2001;
119:
611-614.